Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Energy-efficient visual sensing is of paramount importance to enable battery-backed low power IoT and mobile applications. Unfortunately, modern image sensors still consume hundreds of milliwatts of power, mainly due to analog readout. This is because current systems always supply a fixed voltage to the sensor’s analog circuitry, leading to higher power profiles. In this work, we propose to aggressively scale the analog voltage supplied to the camera as a means to significantly reduce sensor power consumption. To that end, we characterize the power and fidelity implications of analog voltage scaling on three off-the-shelf image sensors. Our characterization reveals that analog voltage scaling reduces sensor power but also degrades image quality. Furthermore, the degradation in image quality situationally affects the task accuracy of vision applications. We develop a visual streaming pipeline that flexibly allows application developers to dynamically adapt sensor voltage on a frame-by-frame basis. We develop a voltage controller that programmatically generates desired sensor voltage based on application request. We integrate our voltage controller into the existing RPi-based video streaming IoT pipeline. On top of this, we develop runtime support for flexible voltage specification from vision applications. Evaluating the system over a wide range of voltage scaling policies on popular vision tasks reveals that Squint imaging can deliver up to 73% sensor power savings, while maintaining reasonable task fidelity. Our artifacts are available at: https://gitlab.com/squint1/squint-ae-publicmore » « less
-
null (Ed.)High spatiotemporal resolution can offer high precision for vision applications, which is particularly useful to capture the nuances of visual features, such as for augmented reality. Unfortunately, capturing and processing high spatiotemporal visual frames generates energy-expensive memory traffic. On the other hand, low resolution frames can reduce pixel memory throughput, but reduce also the opportunities of high-precision visual sensing. However, our intuition is that not all parts of the scene need to be captured at a uniform resolution. Selectively and opportunistically reducing resolution for different regions of image frames can yield high-precision visual computing at energy-efficient memory data rates. To this end, we develop a visual sensing pipeline architecture that flexibly allows application developers to dynamically adapt the spatial resolution and update rate of different “rhythmic pixel regions” in the scene. We develop a system that ingests pixel streams from commercial image sensors with their standard raster-scan pixel read-out patterns, but only encodes relevant pixels prior to storing them in the memory. We also present streaming hardware to decode the stored rhythmic pixel region stream into traditional frame-based representations to feed into standard computer vision algorithms. We integrate our encoding and decoding hardware modules into existing video pipelines. On top of this, we develop runtime support allowing developers to flexibly specify the region labels. Evaluating our system on a Xilinx FPGA platform over three vision workloads shows 43 − 64% reduction in interface traffic and memory footprint, while providing controllable task accuracy.more » « less
-
Vision processing on traditional architectures is inefficient due to energy-expensive off-chip data movement. Many researchers advocate pushing processing close to the sensor to substantially reduce data movement. However, continuous near-sensor processing raises sensor temperature, impairing imaging/vision fidelity. We characterize the thermal implications of using 3D stacked image sensors with near-sensor vision processing units. Our characterization reveals that near-sensor processing reduces system power but degrades image quality. For reasonable image fidelity, the sensor temperature needs to stay below a threshold, situationally determined by application needs. Fortunately, our characterization also identifies opportunities—unique to the needs of near-sensor processing—to regulate temperature based on dynamic visual task requirements and rapidly increase capture quality on demand. Based on our characterization, we propose and investigate two thermal management strategies—stop-capture-go and seasonal migration—for imaging-aware thermal management. For our evaluated tasks, our policies save up to 53% of system power with negligible performance impact and sustained image fidelity.more » « less
An official website of the United States government

Full Text Available